
STRESS: A Framework for Spatial Color

Algorithms

Øyvind Kol̊as∗, Ivar Farup†, and Alessandro Rizzi‡

March 21, 2011

Abstract

We present a new framework for algorithms for a wide range of image
enhancement and reproduction applications, named STRESS – Spatio-
Temporal Retinex-inspired Envelope with Stochastic Sampling. The al-
gorithms work by recalculating each pixel using envelopes for local upper
and lower bounds in the image. The envelopes are obtained sampling
neighbor pixels and can be interpreted as local reference maximum and
minimum. This approach derives from a computational simplification of
previous Spatial Color Algorithms like Retinex or ACE. With the pro-
posed method, various tasks such as local contrast stretching, automatic
color correction, high dynamic range image rendering, spatial color gamut
mapping and color to grayscale conversion can be performed with good
results. The algorithm exhibits behaviors in line with some aspects of the
human visual system, e.g. simultaneous contrast.

Keywords: Spatial color algorithm, stochastic sampling, automatic color
correction, HDR image rendering, contrast enhancement, spatial gamut
mapping, color to grayscale conversion

Introduction

Our vision system collects the meaningful information to produce its final per-
ception, not from the stimulus coming from each single points in the scene,
but rather from the spatial relationships among various stimuli1. This is at
the origin of several well-known visual effects including local contrast enhance-
ment, simultaneous contrast, etc. As a direct consequence of this, with the same
stimulus, properly arranged in the space, we can form nearly all possible color
sensations2.

One of the earliest models able to deal with locality of perception is Retinex,
as presented by Land and McCann3. The scientific community has continued to
be interested in this model and its various applications, as reported in4. In the
basic Land and McCann implementation of Retinex, locality is achieved by long
paths scanning across images. Different implementations and analysis followed
after this first work. These can be divided into two major groups, and differs

∗Øyvind Kol̊as is with Gjøvik University College, Norway and Intel Corporation
†Ivar Farup is with the Gjøvik University College, Norway
‡Alessandro Rizzi is with the Università degli studi di Milano, Italy

1

in the way they achieve locality. The first group 5–10 explores the image using
paths or extracting random pixels around the pixel in question. The second
group 11–16 computes values over the image with convolution mask, distance
weighting or variational techniques. All the sampling implementations use a
high number of samples in order to lower the amount of noise.

A recent implementation, in order to investigate the effects of different spatial
samplings, replaces paths with random sprays, i.e. two-dimensional point dis-
tributions across the image, hence the name ‘Random Spray Retinex’ (RSR)17.
The random sprays replaced the paths with some advantages, but still the re-
quired number of sampled points is very high. A high number of points means
long computational time, which has been always the weak point of this family
of algorithms18.

An edge preserving version Retinex was proposed by Sobol19 for high dy-
namic range images. The edge-preserving behavior was obtained by introducing
a ratio modification operator. Shaked proposed to use envelope operators for
Retinex20. In order to obtain a fast implementation, the envelopes were repre-
sented as 2D IIR filters.

In this paper we present an alternative technique implemented with an ex-
tremely small number of sample points, using two envelopes to characterize the
local visual context. The envelopes are two signals, Emax and Emin that are
constructed such that the image signal is always between the two (see Figure 1
and the next section). The envelopes are calculated using stochastic sampling
technique that is a simpler alternative to the approach in Reference20. By using
a simple weighting of the sample values, an edge-preserving method is obtained
without the need of introducing any ratio modification operator as in19. The
properties of the proposed approach are in line with other Spatial Color Algo-
rithms (SCA) 18. The algorithm framework is called STRESS: Spatio-Temporal
Retinex-inspired Envelope with Stochastic Sampling. STRESS cannot be con-
sidered as one of the many Retinex implementations. It inherits from Retinex
the idea of local white reference, but it implements a very different pixel value
stretching. In contrast with ACE, it is based on linear averages and sampling
only a few pixel values in each iteration.

The structure of the paper is the following: First, the STRESS framework is
presented in the next section. Then its details and properties is demonstrated
through a set of image processing algorithms derived from the STRESS frame-
work. Finally the STRESS parameters and its behavior is discussed.

The STRESS framework

Basic idea

By the human visual system, a relatively bright detail in a very bright part
of an image can appear darker than a darker detail in a very dark part of the
same image. The central part of the STRESS framework is to calculate, for
each pixel, the local reference lightness and darkness points in each chromatic
channel. This is done through calculating two envelope functions, the maximum
and minimum envelopes, completely containing the image signal. The envelopes
are slowly varying functions, such that the image signal is always in between
the envelopes or equal to one of them.

2

In calculating the envelopes, (that serve as the local reference maximum and
minimum values) the most nearby parts of the image have the strongest influence
on the envelopes at that point. In agreement with Rizzi et al.21, this dependency
should be related to the distance. In order to avoid checking all image pixels in
recomputing every pixel, resulting in an O(N2) algorithm, stochastic sampling
will be used as in17. All computations are assumed to be performed in a space
that is close to perceptually uniform. In practice this means, at least, that
gamma corrected images are used. Since the gamma correction work more or less
as a logarithm, this means that the pixel differences involved in the calculations
are similar to lightness ratios. However, this is not mandatory. The algorithm
shows goods results on linearly scaled images as well.

Formal definition of the envelope computation

For each pixel, p0, the values of the maximum and minimum envelopes, Emax

and Emin at the corresponding position are computed in an iterative manner us-
ing N iterations. In every iteration, M pixels intensity values pj , i ∈ {1, . . . ,M},
are sampled at random with a probability proportional to 1/d, d being the Eu-
clidean distance in the image from the sampled pixel to the pixel in question.
The intensity value of the center pixel, p0 is not eligible for random sampling,
but is always included in the sampled set. The pixels are sampled only from a
disk with radius R around the center pixel. When using such a random spray
to sample the image, the strategy we have chosen when a sample outside the
image is attempted is simply to try again until a sample within the image is
found. From these samples, the maximum and minimum samples in the spray
are found,

smax
i = max

j∈{0,...,M}
pj , (1)

smin
i = min

j∈{0,...,M}
pj . (2)

Since p0 is always one of the sample points, smax
i ≤ p0 ≤ smax

i always. The
range ri of the samples and the relative value vi of the center pixel are then
given as

ri = smax
i − smin

i , (3)

vi =

{
1/2 if ri = 0,

(p0 − smin
i)/ri else.

(4)

Thus, vi ∈ [0, 1] always. These quantities are averaged over the N iterations in
order to get a better estimate:

r̄ =
1

N

N∑
i=1

ri, (5)

v̄ =
1

N

N∑
i=1

vi. (6)

Averaging ri and vi instead of averaging smax
i and smin

i directly makes sure that
the algorithm is edge-preserving and does not introduce haloing artifacts. If

3

Figure 1: Illustration of the envelopes of one scan-line of an image. We see the
scan line (blue), Emin (green) and Emax (red). Notice, that the exact shape of
the envelopes will depend not only on the single scan-line, but of the content of
the whole image due to the intrinsic 2D properties of the image.

smax and smin had been averaged directly, too much weight would have been
given to pixels with pixel values distant from the value of the center pixel.
Averaging vi instead, the inverse of the sample range 1/ri, acts as a weighting
factor, giving more weight to collection of samples with a narrow range. Thus,
pixel collections where all pixels come from the same side of some nearby edge
is given higher weight. The envelopes are finally computed from the estimated
average range, the average value, and the pixel value as follows:

Emin = p0 − v̄r̄, (7)

Emax = p0 + (1− v̄)r̄ = Emin + r̄. (8)

Since vi ∈ [0, 1], also v̄ ∈ [0, 1] always. Thus we are sure that Emin ≤ p0 ≤ Emax.
We also notice that with this definition Emax = p0 at the global maximum of
the image, and Emin = p0 at the global minimum. It is also possible, but not
necessary, that the envelopes touch the local extrema. How closely the envelopes
will follow the image will depend on the choice of R, N , and M . An illustration
of the envelopes for one scan-line of an image is shown in Figure 1. For color
images, this is done three times separately for each chromatic channel.

4

Implementation issues

There are different possible ways to perform the random sampling of the pixels
needed for calculating the envelope. One could precalculate various “sprays”17,
or one could use the same spray for all pixel positions. In agreement with the
discussion of17, we use individual sprays.

The position of the pixel is chosen in polar coordinates as follows: First
the distance from the center pixel to the sample pixel is chosen as a random
number d ∈ [0, R], R being the radius of the spray, using a uniform probability
distribution. Then the polar angle of the sample pixel is chosen from a uniform
distribution, θ ∈ [−π, π]. This results in a probability density that is inversely
proportional to the distance to the center pixel of the spray17. In order to
speed up the calculation of the spray, we use precomputed look-up tables for
the conversion between polar and Cartesian coordinates.

The computational complexity of the algorithm is O(NMn), where n is the
number of pixels in the image. In other words, the algorithm is linear in the
number of image pixels. However, for practical purposes, the radius of the
spray, R, has to be increased as O(

√
n) when increasing the image size. Doing

this, the density of sampling points gets lower, so N or M , or both, have to be
increased somewhat in order to obtain results of similar perceptual quality, in
practice making the algorithm heavier than a simple linear one. As a reference,
calculating the image of Figure 2 (512x779 pixels) took approximately 8 seconds
using a C implementation running on a T7700 2.4GHz Intel Core2 Duo CPU,
under linux.

We have implemented STRESS in CUDA 1.1 on a Quadro FX3700 graphic
card, without any optimization.1 For a 512x1024 pixel image, with 10 sampling
points and 100 iterations, the computation takes about 2 seconds.

The complexity of the proposed method is comparable to other SCAs18.
Like many of them, the efficiency can be greatly improved by techniques such
as using sub-sampling and subsequent upscaling with a local linear lut (LLL)22.

Applications

In this section we present STRESS details and properties, through the descrip-
tion of a set of possible applications.

Local contrast enhancement of grayscale images

A straightforward application of STRESS is local contrast enhancement of
grayscale images. Since the envelopes can be interpreted as local reference
maximum and minimum points, to obtain a local effect, the pixel value should
be compared to these quantities. In this way, a bright pixel should have a low
value if it is close to a local reference minimum, and a dark pixel should have a
high intensity value if it is close to a local reference maximum.

This is implemented assigning the values 0 to the local reference minimum,
and 1 to the local reference maximum, and performing a linear scaling be-
tween these extrema. Again, it is important to remember that all computations

1CUDA and Quadro are provided by NVIDIA, see http://www.nvidia.com/.

5

Figure 2: The stress algorithm applied to the grayscale image on the left. The
image size is 512× 779 pixels, and the parameters used were R = 300, M = 3,
N = 100.

are performed in a gamma corrected or perceptually uniform space. This cor-
responds exactly to calculating the relative position within the envelope (see
Figure 1 for an illustration):

pstress =
p0 − Emin

Emax − Emin
(9)

An example contrast stretched grayscale image is shown in Figure 2.

Local color correction of color images

The same approach can be used for color images. If the calculation is performed
independently for each color channel, the three maximum envelopes together will
define a local reference maximum, and the three minimum envelopes will define
a local reference minimum in the three chromatic channels respectively. As in
other algorithms of the same family18, in case of a global or local color cast,
it will result in an automatic color adjustment. An example image is shown in
Figure 3. This kind of automatic color correction will, as for Retinex and ACE,
tend to remove color casts if present, where wanted or not.

The local reference minimum and maximum together define the extremes of
a local color cube in the linear RGB color space containing the pixel to compute
(for the same reasons as in the 1D case). One way to describe locality of the
envelope in color, is considering it as a local color space. This means that for
each point in the image, the RGB color space changes locally according to the

6

Figure 3: The stress algorithm applied to the color image on the left. The
image size is 512× 779 pixels, and the parameters used were R = 300, M = 3,
N = 100.

spatial neighborhood. With local color spaces we can deal with a classic set of
problem in a local framework.

The algorithm will perform an automatic color adjustment along the lines
of ACE21 or RSR17. Consequently, if the change of global white point is not
wanted, methods used in ACE, such as “keep original gray”, to preserve the
original mean values, or “keep original color cast”, to preserve (if present) a
color dominant, can be easily incorporated23

HDR image rendering

Traditionally, high dynamic range (HDR) image rendering or tone mapping
has been considered a specific field of research on its own. One particularly
interesting property of STRESS is that it can be applied directly, without any
modification, as a local tone-rendering operator for high dynamic range images.
That is, HDR images are mapped according to Equation (9).

Also this feature is in line with SCA algorithm family 18. Rearranging spa-
tially and locally the relative values according to the scene content, preserving
edges and compressing gradients.

Two examples of rendered HDR images are shown in Figures 4 and 5. It
should be noted that not only tone-rendering but also local color adjustment,
contrast stretching and luminosity normalization is applied. If the overall color
adjustment is not wanted, techniques such as “Keep original color cast”24 can
easily be added. In the renderings, we can see details in both very light and

7

very dark regions without the generation of artifacts such as halos. However,
the resulting images can appear a bit like high-pass filtered images if compressed
too much. This is controlled by the parameters R, M , and N (see discussion
below). Stress has been tested on a larger set of HDR images providing stable
and satisfactory tone rendering.

Spatial color gamut mapping

In25, Kol̊as et al. presented a spatial color gamut mapping. First, from the
original image with pixel values p0, a gamut clipped image with pixel values
pc was constructed. The clipping was performed along straight lines towards
a neutral point g on the gray axis such that pc = (1 − m)p0 + mg, m being
determined for each pixel independently. Then, the map m was filtered using an
edge-preserving blurring increasing filter (a filter that never reduces the original
pixel value). The symmetric nearest neighbor (SNN) filter26 was used for the
purpose. The algorithm provided quite nice results, but the filter was found to
be operating in a too local manner when compared to other spatial color gamut
mapping algorithms27.

The procedure to compute the stress maximum envelope Emax works as an
edge-preserving increasing filter and can easily be exchanged with the SNN filter.
The resulting spatial gamut mapping procedure is thus to compute Emax (m),
and finally to compute the final gamut mapped image as a convex linear com-
bination of the original image and the neutral image,

psgma = (1− Emax (m))p0 + Emax (m)g. (10)

By this mapping, the colors are changed only along straight lines in the color
space from the original pixel color towards a point on the neutral axis. An
example of an image gamut mapped to the ISO Uncoated gamut is shown in
Figure 6. The resulting images are much more natural looking than the ones
produced using the SNN filter25 in that there are no visible artifacts close to
sharp edges, and no visible over-enhancing of details.

Temporal color correction of movies

For moving pictures, the concept of spatial envelopes can be generalized to the
temporal domain. Since the envelopes are computed using an iterative approach,
a better and even faster solution for moving pictures will be to perform the
iterations over the frame sequence, using a running average. In this way, the
local reference maximum and minimum will not only depend on the current
frame itself, but also on the previous frames.

This can be achieved by exchanging the Equations (5) and (6) with

r̄ = αr + (1− α)r̄p, (11)

v̄ = αv + (1− α)v̄p, (12)

r̄p and v̄p being the values of r̄ and v̄ at the previous iteration, respectively. How
quickly the local reference minimum and maximum will change in the image,
will depend upon the choice of the α parameter, and the number of iterations
on each frame.

8

Figure 4: Rendering of the HDR image memorial. The image size is 512× 768
pixels, and the parameters used were R = 300, M = 10, N = 100. The small
frames show the HDR image at different levels of exposure.

9

Figure 5: Rendering of the HDR image desk. The image size is 512×768 pixels,
and the parameters used were R = 600, M = 10, N = 100. The small frames
show the HDR image at different levels of exposure.

10

Figure 6: Gamut clipped image and spatial gamut mapped image using the
STRESS algorithm.

With this temporal extension, the algorithm realizes two interesting behav-
iors: lightness adaptation and after images. If the video stream ranges from
very bright to very dark, almost nothing will be seen in the dark to begin with,
but after a while, the algorithm will adapt to the darkness, and render the de-
tails well. The opposite effect will be seen when moving from dark to bright.
If the scene is changed from a setting with strong colors or edges to a flat or
homogeneous one, an after image of the first scene will be seen as a negative.
An example of such an after image is shown in Figure 7.

Color to grayscale conversion

A problem that has challenged many researchers, is converting a color image
to a grayscale image without the loss of chrominance edges28 and without the
introduction of artifacts such as halos.

Converting color to grayscale using only the lightness channel values is a good
example of how perceiving a color in context can differ from the color in void
condition. A classic phenomenon is the following. Take two gray patches, similar
but not identical and put them on a common background without contact, at a
certain distance. They will be perceived as identical or much more similar than if
posed on the same background, but in contact on a side, forming an edge. These
differences in appearance are detectable when adjacent, but not detectable when
separated. The same phenomenon takes place also with colored patches.

Thus the presence of edges can change the perceived lightness. Applying
STRESS will result in a more clear differentiation of the edges, even if isolumi-

11

Figure 7: After image produced by the temporal extension of STRESS.

nant, according to their mutual position. Having access to the local reference
minimum and maximum of the image, we can easily define a local gray axis
between these two points, taking into account that we are using a linear color
space. Then the pixel color can simply be projected to this local gray axis, and
we have a grayscale image in which also the chrominance edges are kept.

Denote the local white point as w = [Emax
R Emax

G Emax
B], and the local black

point as b = [Emin
R Emin

G Emin
B], respectively, and let p be the vector of the pixel

values of the three color channels. Then, the gray value of that pixel is computed
as

g =
(p− b) · (w − b)

|w − b|2
. (13)

A common example image for testing color to grayscale algorithms is shown
in Figure 8.

Discussion

Like all the algorithms of the SCA family18, STRESS can have varying behavior
according to its parameters. Here we want to highlight the parameters, together
with some comments about the results and visual configuration on which the
HVS exhibits interesting behaviors.

Sampling

Stochastic sampling is a quick and simple way to explore the image context
around the pixel, in search of the local reference for the pixel adjustment.

12

Figure 8: Example of color to grayscale conversion. The image in the middle
has been realized with a simple averaging of the RGB color channels. Below
STRESS output, the image size is 745 × 498 pixels, and the parameters used
were R = 600, M = 10, N = 100.

13

Changing the sampling method changes the way the algorithm explores the
image and consequently its local behavior. The more samples are collected, the
more higher and lower values will be representative of the neighborhood. This
will result in changes in the locality and also in a decrease of noise. However,
to suppress noise is more important to increase the number of iteration as will
be shortly presented (see Fig. 9).

A statistic characterization of the sampling techniques will be the subject
of future research. However, an interesting point is that just 1 sampled pixel
(together with the pixel itself) is enough to give to the output a rough noisy
version of the image output appearance. This is the lowest sampling possible
and moves the issues about noise and image quality from the computation on
a single image to the effectiveness of the repetition of the computation across a
series of images from the same temporal sequence. In other words, it is possible
to reach a satisfactory steady result with the desired quality, both increasing the
computation on a single image or alternatively keep computing with a limited
number of sampling points and iterations (computationally non expensive) on
temporal series of images of the same scene.

This point suggests an interesting direction of further investigation about
the model and its possible analogies with the human visual system.

In Figure 9 the effect of increasing the number of the samples and iterations
is presented. A set of combinations of STRESS results varying the number of
the sampling point and the number of iteration is presented. First column has
1 sample point for each pixel, the second 5, the third 10, the fourth 50 and
the fifth 100 sampling points. The first line shows results from 1 iteration, the
second line 5, the third 10, the fourth 50 and the fifth line 100 iterations for
each pixel. Original image is visible on the top. Low number of sampling points
gives the highest local contrast in the mid tones at the cost of over exposing
some bright details. This effect is also visible in Figures 2 and 3.

When the number of sampling points increases, the behavior of the algorithm
gets more and more global. In the limit M →∞, the envelopes will be constant
and equal the global max and min of the color channels. The STRESS algorithm
then reduces to global linear contrast stretching. This can also be observed in
Figure 9.

Iterations

To reduce the sampling chromatic noise, the sampling process is iterated sev-
eral times and averaged. This strongly decreases the noise level at the cost of
increased time of computation.

Figure 9 shows the effect of increasing the number of the samples and iter-
ations. Differently from the number of sampling points that is related to the
spatial distribution of the local minima and maxima, the number of iterations
affects more the variance of the computed pixel and is thus merely a way to
reduce noise.

As an initial blind tuning, the number of samples can be set around 10.
Lower values will produce salt and pepper noise. Increasing the number of iter-
ations is more important. A number of iterations close to the radius give results
with extremely limited noise. This criterion can be used as a maximization.
Lowering this number can be very useful if saving the computational power is

14

required and down to 10-20 iterations noise presence is not annoying. Parameter
tuning, as visual perception itself, depends also on the image content.

Radius

The radius parameter R is the maximum distance from the pixel where the
stochastic sampling can be done. It controls the locality of the spatial maxima
and minima for the adjustment. It is not a critical parameter as long as it is
large enough to sample reasonably across the entire image. For all the example
rendered images presented in this paper, the radius is chosen to be large enough
to avoid the artifacts typically resulting from a too small value of the parameter.

If the radius value decreases significantly, the sampling is localized to a very
close and narrow neighborhood around the center pixel. It is interesting to note
from Figure 10 how the color information derives from spatial comparisons.
For very small radii, only the colors near the edges in the original image are
present. Increasing the radius has the effect of spreading color. Figure 10 shows
the results with radii of 2, 4, 8, 16, 32, 64, 128 and 256 pixels (in order from
left to right and from top to bottom). The original image is placed on top, and
its dimensions are 480x348.

For practical purposes with real images, R should be chosen large enough to
cover the entire image, e.g., equal to the diagonal of the image.

Overall behavior

The STRESS algorithm shares some properties with both gray world algorithms
and white patch algorithms for color correction. The average color of the image
is mapped towards gray, wheres, at the same time, the brightest color in the
image is mapped to white. This is performed locally and in a way that is edge
preserving.

Like other spatial color algorithms such as Retinex and ACE, STRESS per-
forms a content driven histogram flattening. Figure 11 shows the lightness
channel histograms of the original Parrot image of Figure 10 (Figure 11 top
left) and the same histogram of the STRESS filtered version (Figure 11 top
right). If the starting image has a reduced number of colors, as visible in the
histogram of Figure 11 bottom left, which refers to the original Parrot image
converted to 256 colors, the effect of STRESS is to produce colors in the larger
color range de-quantizing spatially the image. This is an interesting property of
the Spatial Color Algorithms18.

Only one of the three parameters of the algorithms can be chosen freely. R
should be set large enough to cover the entire image, e.g., by setting it equal to
the diagonal of the image. N should be large enough to avoid visible noise. The
parameter M decides how local the behavior of the algorithm is. For extremely
large values, STRESS will reduce to global contrast stretching. For extremely
low values, STRESS will act somewhat similar to a high-pass filter.

The STRESS algorithm also exhibits a simultaneous contrast type of behav-
ior caused by the spatial comparisons. Figure 12 shows the result of running
STRESS with different parameters on a classic simulataneous contrast configu-
ration. As it is visible from the figure, contrast is enhanced qualitatively in the
way our visual system does as can be seen from the indicated pixel values.

15

Figure 9: Details of STRESS output varying sampling (horizontal) and itera-
tions (vertical). Values are 1, 5, 10, 50 and 100 for both axis

16

Figure 10: Examples of STRESS filtering changing radius starting from R = 2
upper left, doubling the radius for every image, ending at R = 512 lower right.

17

Figure 11: The effect of STRESS on the lightness histogram.

Figure 12: Example of simultaneous contrast filtering

18

Conclusion

In this paper we have presented an new framework for spatially recomputing
the color of a digital image. The color of each pixel is recomputed by scaling
its channel lightness value according to two upper and lower envelope functions.
These envelope functions are obtained sampling a limited number of pixels in
the neighbor. The algorithm performs local color and lightness adjustments in
an edge-preserving manner by means of spatial comparisons.

The framework can be successfully applied to image processing tasks such
as color image equalization and contrast stretching, rendering of high dynamic
range images, spatial color gamut mapping, color to grayscale conversion and
temporal color adjustment of movies. An implementation for moving images can
be particularly efficient, due to the use of historical data. STRESS enhances
the image with minimal user supervision and without any a-priory information
of the input image.

The underlying idea of the framework is simple and easy to implement, and
the algorithm is efficient (linear in number of pixels) compared to other relevant
spatial color algorithms.

Acknowledgments

This work has been partially supported by the PRIN-COFIN 2007E7PHM3-003
project by Ministero dell’Università e della Ricerca, Italy and by the Norwegian
Research Council over the SHP program.

References

1. T. Cornsweet. Visual Perception. Academic Press, New York (1970).

2. J.J. McCann and K. L. Houston. Calculating colour sensation from arrays
of physical stimuli. IEEE Transaction on Systems, Man and Cybernetics 13
(1983), 1000–1007.

3. E. Land and J. McCann. Lightness and retinex theory. Journal of Optical
Society of America 61 (1971), 1–11.

4. J.J. McCann Ed. Special session on retinex at 40. Journal of Electronic
Imaging 13 (1) (2004), 6–145.

5. J. J. McCann, S. McKee, and T. Taylor. Quantitative studies in retinex
theory: A comparison between theoretical predictions and observer responses
to color mondrian experiments. Vision Research 16 (1976), 445–458.

6. E. Land. The retinex theory of color vision. Scientific American 237 (1977),
108–128.

7. J. Frankle and J. J. McCann. Method and apparatus of lightness imaging.
U. S Patent 4384336, (May 17, 1983).

8. D. Marini and A. Rizzi. A computational approach to color adaptation
effects. Image and Vision Computing 18 (2000), 1005–1014.

19

9. T.J. Cooper and F. A. Baqai. Analysis and extensions of the frankle-mccann
retinex algorithm. Journal of Electronic Imaging 13 (1) (2004), 85–92.

10. B. Funt, F. Ciurea, and J.J. McCann. Retinex in matlab. Journal of Elec-
tronic Imaging 13(1) (2004), 48–57.

11. E. Land. Recent advances in retinex theory and some implications for cor-
tical computations: Color vision and the natural image. Proc. Natl. Acad.
Sci. USA 80 (1983), 5163–5169.

12. D.J. Jobson, Z. Rahman, and G.A. Woodel. Properties and performance
of a center/surround retinex. IEEE Transaction on Image Processing 6(3)
(1997), 451–462.

13. K. Barnard and B. Funt. Investigations into multi-scale retinex. In Proc. of
Colour Imaging in Multimedia ’98. Colour & Imaging Institute, University
of Derby, Derby (UK) (1998).

14. M. Bertalmio and J. Cowan. Implementing the Retinex algorithm with
Wilson–Cowan equations. Journal of Physiology, Paris 103 (2009), 69–72.

15. Ron Kimmel, Michael Elad, Doron Shaked, R. Keshet, and Irwin Sobel. A
variational framework for retinex. Int. J. Comp. Vision 52 (2003), 7–23.

16. J. Morel, A. Petro, and C. Sbert. A PDE formalization of retinex theory.
IEEE Trans on Image Processing 19 (2010), 2825–2837.

17. E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini.
Random spray retinex: a new retinex implementation to investigate the local
properties of the model. IEEE Transactions on Image Processing 16 (1)
(2007), 162–171.

18. A. Rizzi and J.J. McCann. On the behavior of spatial models of color. In
Proc. of Electronic Imaging 2007. IS&T and SID, S. Jose, California (USA)
(2007). (invited paper).

19. Robert Sobol. Improving the Retinex algorithm for rendering wide dynamic
range photographs. Journal of Electronic Imaging 13 (2008), 65–74.

20. Doron Shaked and Renato Keshet. Robust Recursive Envelope Operators
for Fast Retinex. Technical Report HPL-2002-74(R.1), HP Laboratories
Israel, Technion City, Haifa 32000, Israel (2004).

21. A. Rizzi, C. Gatta, and D. Marini. A new algorithm for unsupervised global
and local color correction. Pattern Recognition Letters 24 (2003), 1663–
1677.

22. C. Gatta, A. Rizzi, and D Marini. Local linear lut method for spatial color
correction algorithm speed-up. IEE Proceedings Vision, Image & Signal
Processing 153 (2006), 357–363.

23. Carlo Gatta. Human Visual System Color Perception Models and Applica-
tions to Computer Graphics. Ph.D. thesis, Università degli Studi di Milano,
Italia (2005).

20

24. Alessandro Rizzi and Majed Chambah. Perceptual color film restoration.
SMPTE Journal 19 (2010), 33–41.

25. Øyvind Kol̊as and Ivar Farup. Efficient hue-preserving and edge-preserving
spatial color gamut mapping. In 15th Color Imaging Conference, pp. 207–
212. IS&T (2007).

26. David Harwood, Muralidhara Subbarao, Hannu Hakalathi, and Larry S.
Davis. A new class of edgepreserving smoothing filters. Pattern Recognition
Letters 6 (1987), 155–162.

27. Fabienne Dugay, Ivar Farup, and Jon Y. Hardeberg. Perceptual evaluation
of color gamut mapping algorithms. Color Research and Application 33
(2008), 470–476.

28. R. Bala and R. Eschbach. Spatial color-to-grayscale transform preserving
chrominance edge information. In Proceedings of IS&T and SID’s 12th
Color Imaging Conference: Color Science and Engineering: Systems, Tech-
nologies, Applications, pp. 82–86. IS&T, Scottsdale, Arizona (2004).

21

